

How carbon credits can incentivize CCS projects

METI-JOGMEC-IETA joint workshop: Global Carbon Markets and CCS Tokyo, 26th January 2023

Matthias Krey, Managing Director, Perspectives Climate Group

About us

Carbon credit cycle

Voluntary carbon market development

Average price last 3 years: 2-3 \$US/t CO₂e

nerspec

Prices vary significantly based on e.g. activity type, vintage, co-benefits from <1 to 100+ \$US /t CO₂e

Future prices will be higher than the current average as low-cost action is needed for national targets

18 January 2023 + All J-REDD+ credits issued under ART-TREES Trove Research Limited

Principles of carbon crediting

Existing CCS methodologies

Methodology (Standard)	Activity scope	Geographical Scope	ICROA endorsement
Alberta Quantification Protocol for CO2 Capture and Permaent Storage in Deep Saline Aquifers (Alberta Government)	CCS in aquifers and EOR projects (ER)	Alberta (Canada)	No
Carbon Dioxide Removal by Direct Air Capture & Permanent and Secure Geological Storage of CO2 by In-situ Carbon Mineralization (ISO 14064-2)	DAC, storage by carbon mineralization (CDR)	Global	No
Methodology for the Quantification and MRV of GHG emission reduction and removals from CCS projects (American Carbon Registry)	EOR; DAC and BEC with storage in saline formations and depleted oil and gas reservoirs (CDR and ER)	US, Canada, Mexico	Yes
Geologically Stored CO2 Methodology (Puro.earth)	DAC and BEC with storage in deep geological formations and reservoirs (CDR)	Global	No
California Carbon Capture and Sequestration Protocol (Low Carbon Fuel Standard)	CCS projects with onshore sequestration (either saline aquifer or depleted oil and gas reservoirs) + EOR (ER)	US	No
Accelerated Carbonation of Concrete Aggregate (Gold Standard)	DAC and BEC, mineral carbonation of CO2 in demolished concrete (CDR)	Global	Yes
Carbon Capture and Storage Method (Australia's Emission Reduction Fund, ERF)	Applicable to a wide range of CCS technologies, explicitly excludes DAC	Australia	No

Costs of CCS operation

Levelised cost of CO2 capture by sector

Source: IEA (2021). Is carbon capture too expensive?

٠

٠

Credit credits and public funding

- As the policy framework evolves, costs and risks of CCS development will shift to private sector
- Carbon credits generated by CCS projects could attain higher prices because geological storage of CO₂ is perceived more secure than nature-based solutions (NbS)
- Prices of CCS-generated credits could also increase if market participants would be willing to pay a premium for innovative and novel solution
- Prices will differ by CCS type (reductions vs. removals)
- Stacking of carbon credit revenue and other public funding sources needed before wide-scale deployment

Possible gateways on the way to wide-scale deployment in a CCS policy framework

Source: IEA (2013). Global Action to Advance Carbon Capture and Storage

Case study: CCS in oil and gas exploration

Source facility	New gas field	
Project activity	 Source: native CO₂ from gas field Capture: CCS in acid gas removal process Storage: depleted oil or gas reservoir 	
Start year	2025	
Project lifespan	25 years	
Native CO2 generated (Mil. t CO ₂ /year)	1	
Project emissions (incl. fuel, fugitive) (Mil. t CO ₂ /year)	0.15	
Emission reductions (Mil. t CO ₂ /year)	0.85	

Case study: Investment analysis

What are the economics of the CCS project component?

An analysis was carried out to estimate max. viable CAPEXs based on

- OPEX is assumed to be 5% of CAPEX
- 8% discount rate
- Emission reduction potential of the project
- 25 years of crediting
- Different carbon credit prices (5-20 \$US/t CO₂)
- An expected range of IRRs (5 20 %)

Scenario analysis: IRR & CAPEX

Case

scenario

Α

B

С

Outlook

- Latest and upcoming carbon crediting methodologies make CCS carbon crediting possible
- Costs and carbon credit price will differ by CCS technology
- Stacking of carbon credit revenues and public funding will be necessary for most CCS project types before wide-scale deployment can be reached
- Article 6 "pilots" such as the JCM can help bridge the current gap between low carbon prices and actual CCS costs

THANK YOU!

Please contact me for questions & comments

Matthias Krey +49 176 211 75635 krey@perspectives.cc

